
Fluids 

 

Definition of Fluids. 

Fluids are divided into liquids and gases. A liquid is hard to compress and as in the 

ancient saying (Water takes the shape of the vessel containing it), it changes its 

shape according to the shape of its container with an upper free surface. Gas on the 

other hand is easy to compress, and fully expands to fill its container. There is thus 

no free surface. Consequently, an important characteristic of a fluid from the 

viewpoint of fluid mechanics is its compressibility. Another characteristic is its 

viscosity. 

In general, liquids are called incompressible fluids and gases compressible fluids. 

Nevertheless, for liquids, compressibility must be taken into account whenever 

they are highly pressurized, and for gases compressibility may be disregarded 

whenever the change in pressure is small. 

 

1.1 Density, specific gravity, and specific volume. 

The mass per unit volume of material is called the density, which is generally 

expressed by the symbol ρ. The density of a gas changes according to the pressure, 

but that of a liquid may be considered unchangeable in general. The units of 

density are kg/m
3
 (SI). The density of water at 4°C and 1 atm (101 325 Pa, 

standard atmospheric pressure) is 1000 kg/m
3
. The ratio of the density of a material 

ρ to the density of water ρ, is called the specific gravity, which is expressed by the 

symbol s: 

       

The reciprocal of density, i.e. the volume per unit mass, is called the specific 

volume, which is generally expressed by the symbol  : 

                          

  
 

  
                    



 

EXAMPLE 

 Determine the density, specific gravity, and mass of the air in a room whose 

dimensions are 4 m * 5 m * 6 m at 100 kPa and 25°C. 

  
 

  
 

   

         
            

  
 

    
 

    

    
         

Finally, the volume and the mass of air in the room are 

               

                    

 

1.2  ENERGY. 

Energy can exist in numerous forms such as thermal, mechanical, kinetic, 

potential, electrical, magnetic, chemical, and nuclear, and their sum constitutes the 

total energy E (or e on a unit mass basis) of a system. The sum of all microscopic 

forms of energy is called the internal energy of a system, and is denoted by U (or u 

on a unit mass basis). The energy that a system possesses as a result of its motion 

relative to some reference frame is called kinetic energy, the kinetic energy per 

unit mass is expressed as ke=V
2
/2 where V denotes the velocity of the system 

relative to some fixed reference frame. The energy that a system possesses as a 

result of its elevation in a gravitational field is called potential energy and is 

expressed on a per-unit mass basis as pe = gz where g is the gravitational 

acceleration and z is the elevation of the center of gravity of a system relative to 

some arbitrarily selected reference plane. 

                                                                                                                



                                                                                                                                  

 

       

 

 

 

The total energy of a simple compressible system consists of three parts: internal, 

kinetic, and potential energies. On a unit-mass basis, it is expressed as      

     . The fluid entering or leaving a control volume possesses an additional 

form of energy—the flow energy    . Then the total energy of a flowing fluid on a 

unit-mass basis becomes, 

                 
  

 
    

 

 

1.3 Coefficient of Compressibility and Coefficient of Volume Expansion 

a coefficient of compressibility k (also called the bulk modulus of compressibility 

or bulk modulus of elasticity) for fluids as 
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It can also be expressed approximately in terms of finite changes as   

   
  

    
 

  

    
            T=constant 

Differentiating   
 

 
     

  

  
  

  

 
      

For an ideal gas,                          

                           

Ideal gas                    
  

 
 

  

 
                    

the variation of the density of a fluid with temperature at constant pressure.  



The property that provides that information is the coefficient of volume expansion 

(or volume expansivity) β , defined as 
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            p=constant 

                              

where T is the absolute temperature. 

The inverse of the coefficient of compressibility is called the isothermal 

compressibility α and is expressed as, 
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The isothermal compressibility of a fluid represents the fractional change in 

volume or density corresponding to a unit change in pressure. 

The combined effects of pressure and temperature changes on the volume change 

of a fluid can be determined by taking the specific volume to be a function of T 

and P. Differentiating v = v(T, P) and using the definitions of the compression and 

expansion coefficients α and β give, 
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Then the fractional change in volume (or density) due to changes in pressure and 

temperature can be expressed approximately as 

  

 
  

  

 
         

EXAMPLE 

 Consider water initially at 20°C and 1 atm. Determine the final density of water 

(a) if it is heated to 50°C at a constant pressure of 1 atm, and (b) if it is compressed 

to 100-atm pressure at a constant temperature of 20°C. Take the isothermal 

compressibility of water to be α = 4.80 *10
-5

 atm
-1

. (The density of water at 20°C and 1 

atm pressure isρ1 = 998.0 kg/m
3
. The coefficient of volume expansion at the average temperature 

of (20 + 50)/2 = 35°C is β = 0.337 * 10
-3

 K
-1

) 



Sol. 

              

(a) The change in density due to the change of temperature from 20°C to 50°C at constant 

pressure is 

                                       

Noting that         , the density of water at 50°C and 1 atm is 

                          

(b) The change in density due to a change of pressure from 1 atm to 100 atm at 

constant temperature is 

                                     

Then the density of water at 100 atm and 20°C becomes 

                              

 

1.4 viscosity 

When two solid bodies in contact move relative to each other, a friction force develops at the 

contact surface in the direction opposite to motion. To move a table on the floor, for example, we 

have to apply a force to the table in the horizontal direction large enough to overcome the 

friction force. The magnitude of the force needed to move the table depends on the friction 

coefficient between the table and the floor.  

The situation is similar when a fluid moves relative to a solid or when two fluids move relative to 

each other. We move with relative ease in air, but not so in water. Moving in oil would be even 

more difficult, as can be observed by the slower downward motion of a glass ball dropped in a 

tube filled with oil. It appears that there is a property that represents the internal resistance of a 

fluid to motion or the ―fluidity,‖ and that property is the viscosity. The force a flowing fluid 

exerts on a body in the flow direction is called the drag force, and the magnitude of this force 

depends, in part, on viscosity. 

To obtain a relation for viscosity, consider a fluid layer between two very large parallel plates (or 

equivalently, two parallel plates immersed in a large body of a fluid) separated by a distance l 

(Fig. 1–1). Now a constant parallel force F is applied to the upper plate while the lower plate is 

held fixed. After the initial transients, it is observed that the upper plate moves continuously 

under the influence of this force at a constant velocity V. The fluid in contact with the upper 

plate sticks to the plate surface and moves with it at the same velocity, and the shear stress τ 

acting on this fluid layer is 



  
 

 
 

where A is the contact area between the plate and the fluid. In steady laminar flow, the fluid 

velocity between the plates varies linearly between 0 and V, and thus the velocity profile and the 

velocity gradient are 

                      
 

 
        

  

  
 

 

 
                   

 

where y is the vertical distance from the lower plate 

                                                                                                                         Fig. 

1.1 

During a differential time interval dt, the sides of fluid particles along a vertical line MN rotate 

through a differential angle dβ while the upper plate moves a differential distance da = V dt. The 

angular displacement or deformation (or shear strain) can be expressed as 

        
  

 
 

   

 
 

  

  
   

Rearranging, the rate of deformation under the influence of shear stress τ becomes 

  

  
 

  

  
 

Thus we conclude that the rate of deformation of a fluid element is equivalent to the velocity 

gradient du/dy. Further, it can be verified experimentally that for most fluids the rate of 

deformation (and thus the velocity gradient) is directly proportional to the shear stress τ, 

  
  

  
        

  

  
 

Fluids for which the rate of deformation is proportional to the shear stress are called Newtonian 

fluids. Most common fluids such as water, air, gasoline, and oils are Newtonian fluids. Blood 

and liquid plastics are examples of non-Newtonian fluids. In one-dimensional shear flow of 

Newtonian fluids, shear stress can be expressed by the linear relationship 

   
  

  
 

where the constant of proportionality   is called the coefficient of viscosity or the dynamic (or 

absolute) viscosity of the fluid, whose unit is kg/m · s, or equivalently, N · s/m
2
 (or Pa . s where 

Pa is the pressure unit pascal). A common viscosity unit is poise. 

The shear force acting on a Newtonian fluid layer (or, by Newton‘s third law, the force acting on 

the plate) is 



       
  

  
 

where again A is the contact area between the plate and the fluid. Then the force F required to 

move the upper plate in Fig. 1–1 at a constant velocity of V while the lower plate remains 

stationary is 

    
 

 
 

In fluid mechanics and heat transfer, the ratio of dynamic viscosity to density appears frequently. 

For convenience, this ratio is given the name kinematic viscosity n and is expressed as      . 

Consider a fluid layer of thickness l within a small gap between two concentric cylinders, such as 

the thin layer of oil in a journal bearing. The gap between the cylinders can be modeled as two 

parallel flat plates separated by a fluid. Noting that torque is T = FR (force times the moment 

arm, which is the radius R of the inner cylinder in this case), the tangential velocity is V =  R 

(angular velocity times the radius), and taking the wetted surface area of the inner cylinder to be 

A = 2πRL by disregarding the shear stress acting on the two ends of the inner cylinder, torque 

can be expressed as 
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where L is the length of the cylinder and  ̇ . is the number of revolutions per unit time, which is 

usually expressed in rpm (revolutions per minute). Note that the angular distance traveled during 

one rotation is 2π rad, and thus the relation between the angular velocity in rad/min and the rpm 

is      ̇. 

EXAMPLE  

 The viscosity of a fluid is to be measured by a viscometer constructed of two 40-cm-long 

concentric cylinders as bellow Fig. The outer diameter of the inner cylinder is 12 cm, and the gap 

between the two cylinders is 0.15 cm. The inner cylinder is rotated at 300 rpm, and the torque is 

measured to be 1.8 N . m. Determine the viscosity of the fluid. 
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Q1 

Consider the flow of a fluid with viscosity m through a circular pipe. The velocity 

profile in the pipe is given as u(r) = umax(1 - r
n
/R

n
), where umax is the maximum 

flow velocity, which occurs at the centerline; r is the radial distance from the 

centerline; and u(r) is the flow velocity at any position r. Develop a relation for the 



drag force exerted on the pipe wall by the fluid in the flow direction per unit length 

of the pipe 
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Q2 

As shown in Fig., a cylinder of diameter 122mm and length 200mm is placed inside a concentric 

long pipe of diameter 125 mm. An oil film is introduced in the gap between the pipe and the 

cylinder. What force is necessary to move the cylinder at a velocity of lm/s? Assume that the 

dynamic viscosity of oil is 30 cSt and the specific gravity is 0.9. 

Q3 

A thin 20-cm × 20-cm flat plate is pulled at 1 m/s horizontally through a 3.6-mm-thick oil layer 

sandwiched between two plates, one stationary and the other moving at a constant velocity of 0.3 

m/s, as shown in below Fig. The dynamic viscosity of oil is 0.027 Pa.s. Assuming the velocity in 

each oil layer to vary linearly, (a) plot the velocity profile and find the location where the oil 

velocity is zero and (b) determine the force that needs to be applied on the plate to maintain this 

motion 

 

 

1.5 Surface tension 

The surface of a liquid is apt to shrink, and its free surface is in such a state where 

each section pulls another as if an elastic film is being stretched. The tensile 

strength per unit length of assumed section on the free surface is called the surface 

tension.  

    A dewdrop appearing on a plant leaf is spherical in shape. This is also because 

of the tendency to shrink due to surface tension. Consequently, its internal pressure 

is higher than its peripheral pressure. Putting d as the diameter of the liquid drop, T 

as the surface tension, and p as the increase in internal pressure, the following 

equation is obtained owing to the balance of forces as shown in Fig. 1.3: 



Force due to pressure p is  

Droplet or Bubble      
   

 
   

The opposite force due to surface tension is 

Droplet      Bubble         

The balance of forces 

                                   
  

 
  

Or 

                                    
  

 
  

where Pi and Po are the pressures inside and outside the droplet or bubble, 

respectively. When the droplet or bubble is in the atmosphere, Po is simply 

atmospheric pressure. The factor 2 in the force balance for the bubble is due to the 

bubble consisting of a film with two surfaces (inner and outer surfaces) and thus 

two circumferences in the cross section 

The same applies to the case of small bubbles in a liquid. 

 

Fig. 1.3 Balance between the pressure increase within a liquid drop and the surface 

tension. 

The excess pressure in a droplet (or bubble) also can be determined by considering 

a differential increase in the radius of the droplet due to the addition of a 

differential amount of mass and interpreting the surface tension as the increase in 

the surface energy per unit area. Then the increase in the surface energy of the 

droplet during this differential expansion process becomes 



                              

The expansion work done during this differential process is determined by 

multiplying the force by distance to obtain 

                                                 

Equating the two expressions above gives               , which is the same 

relation obtained before and given in above Eq. . Note that the excess pressure in a 

droplet or bubble is inversely proportional to the radius. 

 

Whenever a fine tube is pushed through the free surface of a liquid, the liquid rises 

up or falls in the tube as shown in Fig. 1.4 owing to the relation between the 

surface tension and the adhesive force between the liquid and the solid. This 

phenomenon is called capillarity. As shown in Fig. 1.5, d is the diameter of the 

tube,   the contact angle of the liquid to the wall,   the density of liquid, and h the 

mean height of the liquid surface. The following equation is obtained owing to the 

balance between the adhesive force of liquid stuck to the wall, trying to pull the 

liquid up the tube by the surface tension, and the weight of liquid in the tube: 

        
   

 
    

Or 

  
      

   
                     



 

Fig. 1.4 Change of liquid surface due to capillarity  

Whenever water or alcohol is in direct contact with a glass tube in air under normal 

temperature,    . In the case of mercury,            . In the case where a 

glass tube is placed in liquid, 

For water          

For alcohol                          1.4 

For mercury           

(in mm). Whenever pressure is measured using a liquid column, it is necessary to 

pay attention to the capillarity correction. 



 

Fig. 1.5 capillarity 

EXAMPLE 

 A 0.6-mm-diameter glass tube is inserted into water at 20°C in a cup. Determine 

the capillary rise of water in the tube. The surface tension of water at 20°C is 0.073 

N/m and the contact angle of water with glass is 0°. 

  
      

   
 

       

                               

  

Q1 

When two plates are placed vertically on liquid as shown in Fig. 2.1 1, derive the 

equation showing the increased height of the liquid surface between the plates due 

to capillarity. Also when flat plates of glass are used with a lmm gap, what is the 

increased height of the water surface? 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

Chapter 2 

Pressure. 

When a uniform pressure acts on a flat plate of area A and a force F pushes the 

plate, then 

  
 

 
                

In this case, p is the pressure and F is the pressure force. When the pressure is not 

uniform, the pressure acting on the minute area ΔA is expressed by the following 

equation: 

     
    

  

  
 

  

  
              

Units of pressure. 

The unit of pressure is the pascal (Pa), but it is also expressed in bars or metres of 

water column (mH,O). The conversion table of pressure units is given in Table 2.1. 

In addition, in some cases atmospheric pressure is used: 

             (                   
 

  )                



L atm is standard 1 atmospheric pressure in meteorology and is called the standard 

atmospheric pressure. 

Table 2.1 Conversion of pressure units 

 

Absolute pressure and gauge pressure. 

There are two methods used to express the pressure: one is based on the perfect 

vacuum and the other on the atmospheric pressure. The former is called the 

absolute pressure and the latter is called the gauge pressure. Then, 

gauge pressure = absolute pressure - atmospheric pressure 

In gauge pressure, a pressure under 1 atmospheric pressure is expressed as a 

negative pressure. This relation is shown in Fig. 2.1. Most gauges are constructed 

to indicate the gauge pressure. 

 

Fig. 2.1 Absolute pressure and gauge pressure. 

 



EXAMPLE.  

A vacuum gage connected to a chamber reads 5.8 psi at a location where the 

atmospheric pressure is 14.5 psi. Determine the absolute pressure in the chamber. 

                                

 

Characteristics of pressure 

The pressure has the following three characteristics. 

1. The pressure of a fluid always acts perpendicular to the wall in contact with 

the fluid. 

2. The values of the pressure acting at any point in a fluid at rest are equal 

regardless of its direction. Imagine a minute triangular prism of unit width in 

a fluid at rest as shown in Fig. 2.2. Let the pressure acting on the small 

surfaces dA1, dA2 and dA be p1, p2 and p respectively. The following 

equations are obtained from the balance of forces in the horizontal and 

vertical directions: 

∑                             

∑                             
 

 
         

 
Fig. 2.2 Pressure acting on a minute triangular prism 

The weight of the triangle pillar is doubly infinitesimal, so it is omitted. 

From geometry, the following equations are obtained: 

           

           

Therefore, the following relation is obtained 

                    



Since angle 8 can be given any value, values of the pressure acting at one 

point in a fluid at rest are equal regardless of its direction. 

3. The fluid pressure applied to a fluid in a closed vessel is transmitted to all 

parts at the same pressure value as that applied (Pascal‘s law). 

In Fig. 2.3, when the small piston of area A1 is acted upon by the force F1, the 

liquid pressure p = F1/A1 is produced and the large piston is acted upon by the 

force F2 = PA2. Thus 

     

  

  
                

 

Fig. 2.3 Hydraulic press. 

So this device can create the large force F2 from the small force F1. This is the 

principle of the hydraulic press. 

 

Pressure of fluid at rest. 

In general, in a fluid at rest the pressure varies according to the depth. Consider 

a minute column in the fluid as shown in Fig. 2.4. Assume that the sectional 

area is dA and the pressure acting upward on the bottom surface is p and the 

pressure acting downward on the upper surface (dz above the bottom surface) is 

p + (dp/dz)dz. Then, from the balance of forces acting on the column, the 

following equation is obtained: 

    (  
  

  
  )            



 

Fig. 2.4 Balance of vertical minute cylinder 

  

  
              

Since p is constant for liquid, the following equation ensues: 

     ∫                         

When the base point is set at zo below the upper surface of liquid as shown in 

Fig. 2.5, and po is the pressure acting on that surface, then p = po when z = zo, 

so 

          

Substituting this equation into eqn (2.7), 

 



Fig. 2.5 pressure in liquid 

                                   

Thus it is found that the pressure inside a liquid increases in proportion to the 

depth. 

For the case of a gas, let us study the relation between the pressure and the 

height of the atmosphere surrounding the earth. In this case, since the density of 

gas changes with pressure, it is not possible to integrate simply as in the case of 

a liquid. As the altitude increases, the temperature decreases. Assuming this 

temperature change to be polytropic, then        is the defining - 

relationship. 

Putting the pressure and density at z = 0 (sea level) as           respectively, 

then 

 

   
  

  
                        

Substituting ρ into eqn (2.6), 
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Integrating this equation from z = 0 (sea level), 

  ∫   
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The relation between the height and the atmospheric pressure develops into the 

following equation by eqn (2.1 1): 
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Also, the density is obtained as follows from eqs (2.9) and (2.12): 
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When the absolute temperatures at sea level and at the point of height z are To, 

and T respectively, the following equation is obtained from eqn (     ): 



 

  
 

  

    
                    

From eqs (2.12)-(2.14) 

    

  
   

   

 

   

  
                

From eqn (2.15) 

  

  
  

   

 

   

  
                 

In aeronautics, it has been agreed to make the combined values of    = 101.325 

kPa,    = 288.15 K and    = 1.225 kg/m
3
 the standard atmospheric condition at 

sea level. The temperature decreases by 0.65⁰C every l00m of height in the 

troposphere up to approximately 1 km high, but is constant at -50.5 ⁰C from 1 

km to l0km high. For the troposphere, from the above values for   ,    and    

in eqn (2.10), n = 1.235 is obtained as the polytropic index. 

Measurement of pressure: - 

Manometer A device which measures the fluid pressure by the height of a liquid 

column is called a manometer. For example, in the case of measuring the 

pressure of liquid flowing inside a pipe, the pressure p can be obtained by 

measuring the height of liquid H coming upwards into a manometer made to 

stand upright as shown in Fig. 2.6 (a). When    is the atmospheric pressure and 

ρ is the density, the following equation is obtained: 

                     

When the pressure p is large, this is inconvenient because H is too high. So a U-

tube manometer, as shown in Fig. 2.6 (b), containing a high-density liquid such 

as mercury is used. In this case, when the density is   , 

 

Fig. 2.5 Manometer 



                     

                                 

In the case of measuring the air pressure,    >>  , so pgH in eqn (2.18) may be 

omitted. In the case of measuring the pressure difference between two pipes in 

both of which a liquid of density   flows, a differential manometer as shown in 

Fig. 2.7 is used. In the case of Fig. 2.7(a), where the differential pressure of the 

liquid is small, measurements are made by filling the upper section of the meter 

with a liquid whose density is less than that of the liquid to be measured, or 

with a gas. Thus 

                             

and in the case where    is a gas, 

                       

Figure 2.7(b) shows the case when the differential pressure is large. This time, a 

liquid column of a larger density than the measuring fluid is used. 

 

Fig. 2.7 Differential manometer (1) 

Thus 

                             

and in the case where   is a gas, 

                         

   A U-tube manometer as shown in Fig. 2.7 is inconvenient for measuring 

fluctuating pressure, because it is necessary to read both the right and left water 

levels simultaneously to measure the different pressure. For measuring the 

differential pressure, if the sectional area of one tube is made large enough, as 



shown in Fig. 2.8, the water column of height H could be measured by just 

reading the liquid surface level in the other tube because the surface fluctuation 

of liquid in the tank can be ignored. To measure a minute pressure, a glass tube 

inclined at an appropriate angle as shown in Fig. 2.9 is used as an inclined 

manometer. When the angle of inclination is α and the movement of the liquid 

surface level is L, the differential pressure H is as shown in the following 

equation: 

                 

Accordingly, if a is made smaller, the reading of the pressure is magnified. 

Besides this, GÖttingen-type micromanometer, Chattock tilting 

micromanometer, etc., are used. 

 

Fig. 2.8 Differential manometer (2) 

 

Fig. 3.9 inclined manometer 

EXAMPLE. 

 The water in a tank is pressurized by air, and the pressure is measured by a 

multifluid manometer as shown in below Figure. The tank is located on a 

mountain at an altitude of 1400 m where the atmospheric pressure is 85.6 kPa. 



Determine the air pressure in the tank if h1= 0.1 m, h2= 0.2 m, and h3= 0.35 m. 

Take the densities of water, oil, and mercury to be 1000 kg/m
3
, 850 kg/m

3
, and 

13,600 kg/m
3
, respectively. 

 

 

Elastic-type pressure gauge  

An elastic-type pressure gauge is a type of pressure gauge which measures the 

pressure by balancing the pressure of the fluid with the force of deformation of 

an elastic solid. The Bourdon tube (invented by Eugene Bourdon, 1808-84) 

(Fig. 2.10), the diaphragm (Fig. 2.1 l), the bellows, etc., are widely employed 

for this type of pressure gauge. Of these, the Bourdon tube pressure gauge 

(Bourdon gauge) of Fig. 2.10 is the most widely used in industry. A curved 



metallic tube of elliptical cross section (Bourdon tube) is closed at one end 

which is free to move, but the other end is rigidly fixed to the frame. When the 

pressure enters from the fixed end, the cross-section tends to become circular so 

the free end moves outward. By amplifying this movement, the pressure values 

can be read. When the pressure becomes less than the atmospheric pressure 

(vacuum), the free end moves inward, so this gauge can be used as a vacuum 

gauge. 

 

Fig. 2.10 Bourdon tube pressure gauge                 Fig. 2.11 Diaphragm pressure gauge 

Electric-type pressure gauge 

 The pressure is converted to the force or displacement passing through the 

diaphragm, Bourdon tube bellows, etc., and is detected as a change in an 

electrical property using a wire strain gauge, a semiconductor strain gauge 

(applied piezo resistance effect), etc. These types of pressure gauge are useful 

for measuring fluctuating pressures. Two examples of pressure gauges utilizing 

the wire strain gauge are shown in Fig. 2.12. 



 

Fig 2.13 Wire strain gauge type of pressure transducer 

 

2.2 forces acting on the vessel of liquid:- 

How large is the force acting on the whole face of a solid wall subject to water 

pressure, such as the bank of a dam, the sluice gate of a dam or the wall of a 

water tank? How large must the torque be to open the sluice gate of a dam? 

What is the force required to tear open a cylindrical vessel subject to inside 

pressure? Here, we will study forces like these. 

2.3 Force acting on the vessel of liquid 

How large is the force acting on the whole face of a solid wall subject to water 

pressure, such as the bank of a dam, the sluice gate of a dam or the wall of a 

water tank? How large must the torque be to open the sluice gate of a dam? 

What is the force required to tear open a cylindrical vessel subject to inside 

pressure? Here, we will study forces like these. 

3.2.1 Water pressure acting on a bank or a sluice gate 

How large is the total force due to the water pressure acting on a bank built at 

an angle ϴ to the water surface (Fig. 2.14)? Here, disregarding the atmospheric 

pressure, the pressure acting on the surface is zero. The total pressure dP acting 

on a minute area dA is ρgh dA = ρgy sin ϴ dA. So, the total pressure P acting on 

the underwater area of the bank wall A is: 



  ∫          ∫    
  

 

When the centroid (The centre of mass when the mass is distributed uniformly on 

the plane of some figure, namely the point applied to the centre of gravity, is called a 

centroid.) of A is G, its y coordinate is    and the depth to G is   , ∫     
 

   . So the following equation is obtained: 

                             

 

Fig 2.14 force acting on dam 

 

Fig. 2.15 revolving power acting on water gate (1) (case where revolving axis 

of water gate is just on the water level) 

So the total force F equals the product of the pressure at the centroid G and the 

underwater area of the bank wall. Next, let us study a rectangular sluice gate as 

shown in Fig. 2.15. How large is the torque acting on its turning axis (the x 

axis)? The force F acting on the whole plane of the gate is       by eqn 



(2.24). The force acting on a minute area dA (a horizontal strip of the gate face) 

is      , the moment of this force around the x axis is         and the total 

moment on the gate is ∫           ∫          ,  ∫      is called the 

geometrical moment of inertia   , for the x axis. 

Now let us locate the action point of F (i.e. the centre of pressure C) at which a 

single force F produces a moment equal to the total sum of the moments around 

the turning axis (x axis) of the sluice gate produced by the total water pressure 

acting on all points of the gate. When the location of C is   , 

                    

Now, when   , is the geometrical moment of inertia of area for the axis which is 

parallel to the x axis and passes through the centroid G, the following relation 

exist (Parallel axb theorem: The moment of inertia with respect to any axis equals 

the sum of the moment of inertia with respect to the axis parallel to this axis which 

passes through the centroid and the product of the sectional area and the square of 

the distance to the centroid from the former axis.): 

         
            

Values of   , for a rectangular plate and for a circular plate are shown in Fig. 

2.15.  

Substitute eqn (2.26) into (2.25) to calculate   , 

      
  

   
           

    
  

    
 

 

Fig. 3.15 Geometrical moment of  inertia for axis passing centroid G 



 

Fig 3.16 rotational force acting on water gate (2) (case where water gate is 

under water) 

From eqn (2.27), it is clear that the action point C of the total pressure P is 

located deeper than the centroid G by        .  

The position of    in such a case where the sluice gate is located under the 

water surface as shown in Fig. 2.16 is given by eqn (2.28) where    is 

substituted for    in the second term on the right of eqn (2.27) 

      
  

   
            

      
  

    
 

A heavy car plunges into a lake during an accident and lands at the bottom of the lake on its 

wheels (Fig. 3–17). The door is 1.2 m high and 1 m wide, and the top edge of the door is 8 m 

below the free surface of the water. Determine the hydrostatic force on the door and the 

location of the pressure center, and discuss if the driver can open the door. 

 

Fig. 3.17 
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2.2.2. HYDROSTATIC FORCES ON SUBMERGED CURVED SURFACES 

The easiest way to determine the resultant hydrostatic force FR acting on a two-

dimensional curved surface is to determine the horizontal and vertical 

components FH and FV separately. This is done by considering the free-body 

diagram of the liquid block enclosed by the curved surface and the two plane 

surfaces (one horizontal and one vertical) passing through the two ends of the 

curved surface, as shown in Fig. 3–19. Note that the vertical surface of the 

liquid block considered is simply the projection of the curved surface on a 

vertical plane, and the horizontal surface is the projection of the curved surface 

on a horizontal plane. 

 

Fig. 3.19 

Horizontal force component on curved surface:         

Vertical force component on curved surface:             

      

   √  
    

  

     
  

  
 



The magnitude of the resultant hydrostatic force acting on the curved surface is 

FR, and the tangent of the angle it makes with the horizontal is      
  

  
. 

 

Fig. 3–20 

EXAMPLE  

 A long solid cylinder of radius 0.8 m hinged at point A is used as an automatic 

gate, as shown in Fig. 3–21. When the water level reaches 5 m, the gate opens 

by turning about the hinge at point A. Determine (a) the hydrostatic force acting 

on the cylinder and its line of action when the gate opens and (b) the weight of 

the cylinder per m length of the cylinder. 

 

 Fig. 3–21 
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Example 

A 3 m diameter roller gate retains water on both sides of a spillway crest as 

shown in the figure below. Determine (i) the magnitude, direction and location 

of the resultant hydrostatic thrust acting on the gate per unit length, and (ii) the 

horizontal water thrust on the spillway per unit length. 

 

Left side 

   
 

 
               

      
 

 

 

 
            

Right side 

   
 

 
                 

      
 

 

 

 
            

Net    

                       

 



Net    
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2.2.2 force to tear a cylinder 

 In the case of a thin cylinder where the inside pressure is acting outward, as 

shown in Fig. 2.17(a), what kind of force is required to tear this cylinder in the 

longitudinal direction? Now, consider the cylinder longitudinally half sectioned 

as shown in Fig. 2.17(b), with diameter d, length 1 and inside press p. the force 

acting on the assumed vertical center wall ABCD is pdl which balances the 

force in the direction acting outward on the cylinder wall. In other words, the 

force generated by the pressure in the x direction on a curved surface equals the 

pressure pdl, since the same pressure acts on the projected area of the curved 

surface. Furthermore, this force is the force 2Tl (T is the force acting per unit 

length of wall which tears this cylinder longitudinally in halves along the lines 

BC and AD): 

 

Fig. 2.17 cylinder acted on by inertial pressure 

        

Or  

  
  

 
                



If the tensile stress due to T is lower than the allowable stress, safety is assured. 

By utilizing this principle, a thin-walled pressure tank can be designed. 

2.3 BUOYANCY AND STABILITY  

Fluid pressure acts all over the wetted surface of a body floating in a fluid, and 

the resultant pressure acts in a vertical upward direction. This force is called 

buoyancy. The buoyancy of air is small compared with the gravitational force 

of the immersed body, so it is normally ignored. Suppose that a cube is located 

in a liquid of density ρ as shown in Fig. 2.18. The pressure acting on the cube 

due to the liquid in the horizontal direction is balanced right and left. For the 

vertical direction, where the atmospheric pressure is po, the force Fl acting on 

the upper surface A is expressed by the following equation: 

                          

The force F2 acting on the lower surface is 

                          

So, when the volume of the body in the liquid is V, the resultant force F from 

the pressure acting on the whole surface of the body is 

                                              

 

Fig. 2.18 Cube in liquid 

The same applies to the case where a cube is floating as shown in Fig. 2.18(b). 

From this equation, the body in the liquid experiences a buoyancy equal to the 

weight of the liquid displaced by the body. This result is known as Archimedes‘ 

principle. 



(The buoyant force acting on a body immersed in a fluid is equal to the weight 

of the fluid displaced by the body, and it acts upward through the centroid of 

the displaced volume.) 

For floating bodies, the weight of the entire body must be equal to the buoyant 

force, which is the weight of the fluid whose volume is equal to the volume of 

the submerged portion of the floating body. That is, 

                         
    

      
 

  

  
 

 

EXAMPLE 3–1 

A crane is used to lower weights into the sea (density " 1025 kg/m3) for an 

underwater construction project (Fig. ). Determine the tension in the rope of the 

crane due to a rectangular 0.4-m ( 0.4-m ( 3-m concrete block (density " 2300 

kg/m3) when it is (a) suspended in the air and (b) completely immersed in 

water. 

a)  

                    

                     

b) 

                                 

                            

 

The center of gravity of the displaced liquid is called ‗center of buoyancy‘ and 

is the point of action of the buoyancy force. Next, let us study the stability of a 

ship. Figure 2.19 shows a ship of weight W floating in the water with an 



inclination of small angle ϴ. The location of the centroid G does not change 

with the inclination of the ship. But since the center of buoyancy C moves to 

the new point Cʹ, a couple of forces Ws = Fs is produced and this couple 

restores the ship‘s position to stability. 

 

Fig. 2.19 stability of a ship 

 The forces of the couple Ws are called restoring forces. The intersecting point 

M on the vertical line passing through the center of buoyancy C‘ (action line of 

the buoyancy F) and the center line of the ship is called the metacenter, and GM 

is called the metacentric height (How high is the metacenter of a real ship? It is said that the 

height of metacenter of a warship is about 0.8-1.2 m, a sailing ship 1 .O-1.4 m and a large passenger 

ship 0.3-0.7 m. When these ships go out to sea the wave cycle is 12-13 seconds.). As shown in 

the figure, if M is located higher than G, the restoring force acts to stabilize the 

ship, but if M is located lower than G, the couple of forces acts to increase the 

roll of the ship and so make the ship unstable. 

 

 

 

A pipe bend tapers from a diameter of d1 of 500mm at inlet to a diameter d2 of 

250mm at outlet and turns the flow trough an angle u of 45o . Measurements of 

pressure at inlet and outlet show that p1 = 40 kPa and p2 = 23 kPa. If the pipe is conveying oil (r = 

850 kg/m3 ). Calculate the magnitude and direction of the resultant force on the bend when the oil 

is flowing at the rate of 0.45m3 /s. 

 

 

 

 



 

Fluid Momentum 

      
  

  
 

 

  
     

m –mass 

a- Acceleration  
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Bernoulli's equation 

 

Force acting on fluid on streamline 

     
  

  
    

  

  
              

  

  
  

 

 

  

  
       

v = v(s, t) 

   
  

  
   

  

  
   

The acceleration is then 

  

  
 

  

  
 

  

  

  

  
 

  

  
  

  

  
 

If the z axis is the vertical direction 

           

So 
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In the steady state, 
  

  
   



 
  

  
  

 

 

  

  
  

  

  
 

is called  equation of motion for one dimensional non-viscous fluid flow  

Euler‘s equation is integrated with respect to s to obtain a relationship between 

points a finite distance apart along the streamline. This gives 
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and for an incompressible fluid 

  

 
 

 

 
                     

between arbitrary points, and therefore at all points, along a streamline. Dividing 

each term in eqn 
  

 
 

 

 
             by g, 

  

  
 

 

  
                     

Multiplying each term of eqn (5.7) by ρ, 

   

 
                       

The units of the terms in eqn (5.7) are m
2
/s

2
, which can be expressed as kgm

2
/(s

2
 

kg ). Since kgm
2
/s

2
 = J (for energy), then v

2
/2, p/ρ and gz in eqn (5.7) represent the 

kinetic energy, energy due to pressure and potential energy respectively, per unit 

mass.  

The terms of eqn (5.8) represent energy per unit weight, and they have the units of 

length (m) so they are commonly termed heads. 

u
2
/2g - : velocity head  

p/ρg pressure head  

z : potential head  

H : total head 



The units of the terms of eqn (5.9) are kg/(s
2
m) expressing energy per unit volume. 

Thus, eqns (5.7) to (5.9) express the law of conservation of energy in that the sum 

of the kinetic energy, energy due to pressure and potential energy (Le. the total 

energy) is always constant. This is Bernoulli's equation. If the streamline is 

horizontal, then the term ρgh can be omitted giving the following: 

   

 
       

where ρv
2
/2 is called the dynamic pressure, ps the static pressure, and pt the total 

pressure or stagnation pressure. 

 

Exchange between pressure head and velocity head 



 

 

 

Ex 

A cylindrical water tower of diameter 3.0 m supplies water to a house. The level of 

water in the water tower is 35 m above the point where the water enters the house 

through a pipe that has an inside diameter 5.1cm. The intake pipe delivers water at 

a maximum rate of 2.0 ×10
−3

 m
3
 ⋅s 

−1
 . The pipe is connected to a narrower pipe 

leading to the second floor that has an inside diameter 2.5 cm. What is the pressure 

and speed of the water in the narrower pipe at a point that is a height 5.0 m above 

the level where the pipe enters the house? 

 

 



 

   
 

 
         

   
 

 
         

We assume that the speed of the water at the top of the tower is negligibly small 

due to the fact that the water level in the tower is maintained at the same height and 

so we set v1 = 0 . The pressure at point 2 is then 

 

we use the value for the density of water ρ = 1.0 ×103 kg ⋅m−3 , the change in 

height is ( y1 − y2 ) = 35 m , and the pressure at the top of the water tower is P1 = 

1atm . The rate R that the water flows at point 1 satisfies R = A1 v1 = π(d1 / 2) 
2
 v1 . 

Therefore, the speed of the water at point 1 is 

 

 

 



 

We now apply Bernoulli‘s Equation to the points 2 and 3, 

 

 

The change in height y2 − y3 = −5.0 m . The speed of the water at point 3 is 

 

 

 

 

 

A pipe bend tapers from a diameter of d1 of 500 mm at inlet to a diameter d2 of 250 

mm at outlet and turns the flow through an angle ϴ of 45
o
. Measurements of 

pressure at inlet and outlet show that p1 = 40 kPa and p2 = 23 kPa. If the pipe is 

conveying oil (ρ = 850 kg/m
3
). Calculate the magnitude and direction of the 

resultant force on the bend when the oil is flowing at the rate of 0.45m3 /s. 

 

 


